
Metaheuristic Based Approach to Regression
Testing

Shweta Mittal, Om Prakash Sangwan

Deptt. Of Computer Science,

Guru Jambeshwar University of Science & Technology
Hisar, India

Abstract— Regression testing is a very expensive and time
consuming process as there may be insufficient resources to
re-execute all the test cases in resource and time constrained
environment. It acquires a lot of human effort, if done
manually. Lot of techniques have been reported on how to
select regression tests so that the number of test cases do not
boast up too high as the software evolves. The techniques
include regression test selection, test minimization and test
prioritization. In this paper, various metaheuristic approaches
have been studied to examine their potential benefits to
regression testing. The paper also addresses the problem of
choice of fitness metric and determination of the most suitable
search technique to apply. Genetic algorithm performs well,
although Greedy approaches are surprisingly effective, given
the multimodal nature of the landscape. It may be
accomplished that Cuscuta ordering which is inspired by
intelligent behaviour of plants gives same results as given by
the optimal and ACO ordering but better than unordered,
random and reverse order. The study also reveals that ABC
outperforms the other approaches i.e. GA, ACO, BCO and
PSO in test suite optimization process as parallel behaviour of
the bees is used to reach the solution generation faster.

Keywords— Metaheuristic, Regression Testing, Test Case
prioritization.

I. INTRODUCTION

Software testing is one of the important process in
Software Development Life Cycle. As specified by Glen
Myers,” Testing is a process of executing a program with
the intent of finding an error”. It typically consumes at least
50% of the total cost involved in software development [28].
Test suite is a collection of test cases that is used to test a
software program to show that it behaves as expected. Test
suite optimization is a process of generating effective test
cases in a test suite that can cover the given SUT (System
Under Test) within less time. Regression testing is usually
performed during the maintenance phase whenever any
changes are made to the software in order to ensure that no
new defects are introduced and also no old defects have
regressed. Various techniques have been proposed by
researchers on regression test case selection, test case
minimization and test case prioritization using
metaheuristic techniques. The emerging area in this field is
swarm intelligence. Bonabeau has defined the swarm
intelligence as ‘‘. . .any attempt to design algorithms or
distributed problem-solving devices inspired by the
collective behaviour of social insect colonies and other

animal societies. . .” [30]. In this paper, we have explored
the utilization of metaheuristic based approach to regression
testing.

A. Regression Testing

Maintenance is required when some of the
components of software need to be replaced, software is
upgraded or enhanced to include additional features and to
provide more services. Regression testing is defined as “the
process of retesting the modified parts of the software and
ensuring that no new errors have been introduced into
previously tested code” [1]. Testers might re-run all test
cases generated at earlier stages to ensure that the program
behaves as expected. However, as the software evolves, test
suite grows larger for which it is practically impossible to
retest all the test cases. Effective regression testing is a
trade off between number of regression test cases and the
cost of regression testing.

 There is a need of some approach for selecting the
subset of test suite which can reveal the maximum faults
within lesser time and the approach chosen will depend on
the problem in hand. If the code of software is available,
then white box testing techniques i.e. path coverage, code
coverage, statement coverage , branch coverage etc. are
used, while if only functionalities are available, then
Boundary Value Analysis (BVA) , Equivalence
Partitioning , all pair testing etc. black box techniques are
used. Average Percentage of Fault Detected (APFD) is
most frequently and widely used metric now-a-days which
can be calculated as following [31]:

APFD = 1 - TF1+ TF2 + + TFm + 1
n.m 2n

where, T - The test suite under evaluation
 m - The number of faults contained in the program

 under test P
 n - The total number of test cases in and
 TFi - The position of the first test in T that exposes

ith fault.

Exhaustive testing a program’s input is infeasible
for any reasonably-sized program [7]. The number of
possible tests for even simple software components is
practically infinite and execution of all the test cases will

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2597

require a large amount of human effort and time. The
various techniques which researchers have considered for
minimizing the cost of regression testing includes
regression test selection, regression test minimization and
regression test prioritization. Therefore, the objective of our
paper is to find the efficient test cases from the test suite
which covers the maximum faults or functionalities,
minimize redundancy and execution time etc. by means of
the available techniques so that the cost can be minimized.
 Regression test selection techniques reduce the
cost of regression testing by selecting an appropriate subset
of test cases from the existing test suite based on
information about the program, modified version and test
suite [3]. We can further reduce the size and time required
to execute a test suite by test suite minimization and test
suite prioritization techniques. Test suite minimization
techniques lower the cost by reducing a test suite to a
minimal subset that maintains equivalent coverage of the
original test suite with respect to a particular test adequacy
criterion[2]. This can be achieved by removing the
redundant test cases so that minimized test suite cover the
same fault or functionalities but within the lesser time or
resources or by removing the test cases for which the
functionalities has been removed. The main disadvantage
behind test case selection and minimization is that it may
discard the necessary test cases.

 Test Suite Prioritization techniques order the
test cases such that higher priority test cases according to
some criteria are executed prior to the ones with the lower
priority. For example, testers might wish to run test cases
with the higher coverage prior to those having the lower
coverage. So, none of the test case is discarded and the user
can execute the test cases according to available time and
resources. Test case prioritization techniques have its very
good application in time constrained environment.
Researchers have formally defined the test case
prioritization problem as follows:

“Definition: The Test Case Prioritization Problem : Given:
T, a test suite, PT, the set of permutations of T, and f, a
function from PT to the real numbers.
Problem: Find T′ € PT such that (¥ T′′) (T′′ €PT)(T′′≠
T′)[f(T′) ≥f(T′′)].

In this definition, PT represents the set of all

possible permutations of T and f is a function that applied
to any such ordering yields an award value for that
ordering.”[4]

Test case prioritization is basically of two types:
Version Specific and General test case prioritization.
Version-specific test case prioritization, given a program P
and test suite T, test suite will be prioritized only for use on
a specific version of P whereas in general prioritization, it
will be useful over the successive versions of P. Test case
prioritization is very effective in time constrained
environment in which we have limited time to re-execute
all the test cases. Test suite prioritization in general is an
NP complete problem and to reduce it into a polynomial
time, authors have used time based constraint [19].

There can be many goals for prioritization:
 To maximize the rate of fault detection.
 Maximize the coverage
 Increase the confidence in the reliability of the

SUT in less time.
 Increase the likelihood of revealing faults etc.

The different techniques which are commonly used in test
suite prioritization are as follows:

 Random ordering: In this technique, test cases are
randomly ordered in a test suite.

 Statement coverage : Test cases are prioritized in
terms of the total number of statements covered.
This can be achieved by counting the amount of
statements covered by each test case and sorting
them in the descending order .When multiple test
cases cover the same number of statements, an
additional rule is necessary to order the test
cases(they can be ordered randomly) .

TABLE I
TEST SUITE STATEMENT COVERAGE

Test Case Statements covered

T1 S2,S3

T2 S1,S4,S6,S7

T3 S4,S5,S6

Table 1 shows test suite statement coverage indicating the
order of test cases as follows : T2,T3,T1

 Additional statement coverage: Highest priority is
given to the test cases which cover the maximum
number of statements, the next priority to the test
cases with maximum statements not previously
covered and so on. For test suite specified in Table
1, ordering will be T2,T1,T3.

 Branch Coverage: It is similar to the statement
coverage with the difference that coverage is
measured in terms of program branches, that is,
test case which covers the maximum branches is
given the higher priority and so on.

 Additional branch coverage: Similar to additional

statement coverage, except the coverage is
measured in terms of number of branches rather
than the number of statements.

 Besides this, there are several other methods like
Fault Exposing Potential (FEP), Additional FEP etc. which
we have not included in our study .Test suite minimization
and Test suite prioritization can also be used in combination
i.e. first minimized test suite is obtained by removing the

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2598

redundant test cases or those which are not needed and then
assigning priority to test cases in minimized test suite.

II. METAHEURISTIC TECHNIQUES

 Metaheuristic is a higher-level procedure designed
to generate a lower-level procedure or heuristic (partial
search algorithm)[32] . These techniques provides us with
the greater advantage of lesser execution time while making
some negotiation on the solution obtained i.e. it provides
the near optimal solution. They grant sufficiently good
solution to an optimization problem especially with partial
or inadequate information or limited computation capacity.
Here, “heuristic” means search, that is, there is some
learning component which is guiding the whole search
process. Metaheuristic techniques are usually non-
deterministic i.e. given the same initial population, they will
lead to different results, but the results are in close
proximity to each other. Techniques which compose
metaheuristics range from simple local search procedure to
complex learning processes[33]. Based on our literature
work in this section, we have done the classification of
metaheuristic techniques as shown in Figure 1.

.

A. Classification of Metaheuristic Techniques

The techniques can be classified into different
groups depending on the criteria being considered, such as
population based, iterative based, stochastic, deterministic,
etc [5]. Population based approach maintain and improve
multiple candidate solution, often using population
characteristics to guide the search. Important groups of
population based algorithms are Evolutionary Algorithms
(EA) and Swarm Intelligence (SI) based algorithms.

Fig. 1 Classification of Metaheuristic Techniques

where , GA: Genetic Algorithm , DE : Differential
Evolution , ACO : Ant Colony Optimization, PSO: Particle
Swarm Optimization, ABC: Artificial Bee Colony, BCO:
Bee Colony Optimization .

The most popular EA is Genetic Algorithm (GA).
GA was invented by John Holland in 1960 which attempts
to simulate the Darwinian theory of natural evolution[8]. As
shown in Figure 2, an iterative process is executed,
initialized by a randomly chosen population. The iterations
are called generations and the members of the population
are called chromosomes. The process terminates when a
population satisfies some pre-determined condition (or a
certain number of generations have been exceeded). On
each generation, some members of the population are
recombined, crossing over elements of their chromosomes.
A fraction of the offspring of this union are mutated and,
from the offspring and the original population a selection
process is used to determine the new population. Crucially,
recombination and selection are guided by the fitness
function; fitter chromosomes having a greater chance to be
selected and recombined. Lower probability for mutation
and higher for crossover helps to achieve right balance
between the exploration and exploitation. GA has been
extensively used by researchers for regression test case
prioritization [24,25].

1. Randomly initialize population(t)
 2. Determine fitness of population(t)
 3. Repeat
 i. Select parents from population(t)
 ii. Perform crossover on parents creating
 population(t+1)
 iii. Perform mutation of population(t+1)
 iv. Determine fitness of population(t+1)
4. Until best individual is good enough.

Fig. 1 Pseudo code of GA

Differential Evolution is the variant of GA. In DE

algorithm, all solutions have an equal chance of being
selected as parents independent of their fitness values. The
use of a mutation operation, which has the self-adaptability
feature, a crossover operation and a greedy process for the
selection, makes DE a fast converging evolutionary
algorithm. Moreover , DE does not face any Hamming Cliff
Problem.

The term swarm is used for the group of

interactive agents (generally small in size) which possess
some special behavior like bees swarming around their hive,
ants following a trail, flock of birds travelling together
forming a particular shape etc in the search of food.
Swarms locally interact with each other and with the
environment following a decentralized approach. Ant
Colony Optimization (ACO), Bee Colony
Optimization(BCO), Artificial Bee Colony Optimization
(ABC), Particle Swarm Optimization(PSO) are examples of
Swarm Intelligence.

 ACO was initially proposed by Marco Dorigo in

1992. It is based on the behaviour of ants in search of food
sources. Artificial ants leave a virtual trail accumulated on

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2599

the path segment they follow. The path for each ant is
selected on the basis of the amount of “pheromone trail”
present on the possible paths starting from the current node
of the ant. Over time, the pheromone trail starts to
evaporate, thus reducing its attractive strength. Pheromone
evaporation has the advantage of avoiding the convergence
to a locally optimal solution. Updating the trail is performed
when ants either complete their search or get the shortest
path to reach the food source. The pseudo code of ACO is
presented in Figure 3.
procedure ACO
 while(termination condition is not satisfied)
 generateSolutions()
 daemonActions()
 pheromoneUpdate()
 end while
 end procedure

Fig. 3 Pseudo code of ACO

Various authors implemented ACO for test case

selection and prioritization [14,34].

BCO is a population-based search

algorithm which was developed in 2005 and it has been
used for regression test case prioritization ([11],[20]). It
mimics the food foraging behaviour of honey bee colonies.
In this algorithm, there are 2 types of bees i.e. scout bees
and forager bees. The scout bees move randomly in an area
surrounding the hive in search of available food sources.
They continue with the exploration process and return back
to the hive until they are exhausted (as shown in step 2 of
Figure 4). After returning to hive, they deposit the food
harvested and perform the waggle dance. By observing the
dance, the forager bees learn the steps performed by scout
bees and move to the food sources as guided by the scout
bees. The forager bees continue then with the path
exploitation.

1. Initialize bee population.
2. For each Scout Bee Si
 Perform exploration process (until some
 condition met)
3. For each Forager Bee Fi
 Perform exploitation process (until some
 condition met)
4. Evaluate all solutions and find the best one.

. Fig. 4 Pseudo code of BCO

The idea of PSO was given by John Kennedy and

Eberhert in 1995. PSO is a population-based stochastic
optimization technique. It consists of swarm of particles i.e.
fishes, birds etc. moving in a search space of possible
solutions for a problem. Every particle has a position vector
representing a candidate solution to the problem and a
velocity vector. Position here corresponds to rank of test

case in a test suite and the velocity to execution time or
coverage respectively. Moreover, each particle contains a
small memory that stores its own best position seen so far
and a global best position obtained through communication
with its neighbour particles. The pseudo code of PSO is
presented in Figure 5.

1. Generate population of ‘n’ number of particles
2. For each n particle

i. Initialize position
ii. Initialize velocity

 End for
3. Identify best particle from the population.
4. For each n particle

i. Update position and velocity of particle
w.r.t. best particle

ii. If (updated position & velocity > old
position and velocity)

 Keep the new position and velocity
 Else
 Revert to old position
5. Check each particle

 If (any particle fulfills stopping
criteria)

 STOP.
 Else
 Go to Step 4.

Fig. 5 Pseudo code of PSO

ABC algorithm was proposed by Karaboga in

2005 to solve numerical optimization problem. It is a non-
pheronome, population based metaheuristic technique.
Each employed bee is associated with a particular food
source. Also, the number of employed and onlooker bees
are equal. As explained in Figure 6, Bees randomly search
for food positions with the higher amount of nectar. Once
the bees find such position, they go back to the hive and
communicate about the food source position. The most
important part of the hive is dancing area where the bees
exchange information. The related dance is called waggle
dance. If food source position is close to the hive, the bees
perform waggle dance else bees perform the round dance.
Waggle dance is eight like figure. The bees have capability
of memorizing the location of food sources with the higher
nectar amount. Once such food source is discovered, the
bees start exploiting it. Hence, they become the employed
forager. ABC is based on the foraging behaviour of honey
bees. There are three types of bees:

 Employee bees: Each employee bee is associated

with a particular food source. The bees go to their
associated food source and determine its neighbor
source, then evaluate its nectar amount and dances
in the hive.

 Onlooker bees: Each onlooker bee watches the
dance of employed bees and chooses one of their
sources depending on the dances, and then goes to

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2600

that source. After choosing a neighbor around that,
she evaluates its nectar amount.

 Scout bees: If the onlooker bee finds that the
selected test cases are not efficient, then the scout
bee generates a new population of test cases and
replaces the test cases in the temporary-test case-
list with random new test cases.

The whole process is repeated until termination

condition is met, that is, maximum coverage criteria is
obtained or maximum number of cycles is executed. ABC
has been widely used for regression test case optimization
([13],[16],[26],[27]) and for optimizing numerical
benchmark functions ([5],[9],[10]).

1. Initialize
2. REPEAT

i. Move the employed bees onto their food
sources and determine their nectar
amounts.

ii. Move the onlookers onto the food sources
and determine their nectar amounts.

iii. Move the scouts for searching new food
sources.

iv. Memorize the best food source found so
far.

3. UNTIL (requirements are met).

Fig. 6 Pseudo code of ABC

Till now there are strong observations and

formulation about the animal’s intelligent behaviour such as
ant colony, bee colony. They involve foraging for food not
by simple but by collective intelligence behaviour. Not only
animals as described above forage for food intelligently but
the same have been done by the plants too. A key point of
observation is that Cuscuta somehow knows its starvation.
If the host is found unsuitable, the Cuscuta species continue
its search but once selection is made the Cuscuta species
coil around its selected host in a specific manner
(anticlockwise) to transfer resources from the host plant.
Considering this dynamics, it can be said that Cuscuta
search for its food from its current need and will continue to
attack till its starvation get complete. As soon as its
starvation is completed a new branch will evolve. The
evolution of new branch is considered as the completion of
search i.e. no left starvation. The new branch will again
repeat the same process until all plants nutrients are been
taken by Cuscuta i.e. at short of dead host[29].

III. LITERATURE REVIEW

Lot of techniques have been proposed by various
researchers on how to apply metaheuristic techniques to
regression testing. W. Eric Wong et al. proposed hybrid
technique which combines modification, minimization and
prioritization-based selection using a list of source code
changes and the execution traces from test cases run on
previous versions [6]. He reported his experience with a
tool called ATAC which showed that both minimization

and prioritization serve as good, cost-effective alternatives
for testers who need to conduct quick regression testing
under time pressure and budget constraints. Size reduction,
precision and recall are the metrics used to examine the
goodness of the proposed approach.

G. Rothermal et al. described several techniques

for using test execution information to prioritize test cases,
including techniques that order test cases based on their
total coverage of code components, coverage of code
components not previously covered, and their estimated
ability to reveal faults in the code components that they
cover [4]. The performance of these techniques was
compared with untreated, randomly and optimally ordered
test suites. Analysis of the data showed that each of the
prioritization techniques studied improve the rate of fault
detection of test suites, and this improvement occurred even
with the least expensive of those techniques.

Some researchers applied greedy techniques for

test case prioritization problem. Zheng Li et al. compared
the greedy techniques i.e. Greedy, Additional Greedy and
2-optimal with the two metaheuristic techniques i.e. Hill
Climbing and Genetic Algorithm [18]. The results showed
that Genetic Algorithms perform well, although Greedy
approaches are surprisingly effective, given the multimodal
nature of the landscape.

 Arvinder Kaur et al. proposed the Bee Colony
Optimization Algorithm for Fault Coverage Based
Regression Test Suite Prioritization[11]. The BCO
algorithm has been formulated for fault coverage to attain
maximum fault coverage in minimal units of execution time
of each test case, using two examples whose results are
comparable to optimal solution. Average Percentage of
Fault Detection (APFD) metrics and charts has been used to
show the effectiveness of proposed algorithm and was
implemented in CPP compiler. Arvinder Kaur et al. further
used Particle Swarm Optimization with Cross-Over
Operator for prioritization in regression testing which did
prioritization of test cases on different selection criteria
other than the fault coverage and code coverage, as the
algorithm uses the phenomena of convergence (PSO) while
diversifying search space (GA operator) for regression
testing [12]. The APFD & APCC values were comparable
w.r.t. optimal result, that proves algorithm prioritized
efficiently. Some researchers have also combined PSO
with the mutation operator of GA [17]. The Genetic
Algorithm (GA) operators provide optimized way to
perform prioritization in regression testing and on blending
it with Particle Swarm Optimization (PSO) technique
makes it effective and provides fast solution. The Genetic
Algorithm (GA) operator that has been used is mutation
operator which allows the search engine to evaluate all
aspects of the search space. For the problem taken, the
algorithm provides 75.6% of fault coverage but sometimes,
mutation can result in quite long execution time.

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2601

Bharti Suri et al. used another metaheuristic
technique i.e. Ant Colony Optimization for test case
selection and prioritization[14]. Random nature of ACO
helps to explore the possible paths and choose the optimal
from them. The results obtained were in close proximity to
the optimal results. However, the best results are not found
for all the cases.

 Arvinder Kaur et al. implemented GA for

regression test suite prioritization within time constrained
environment on the basis of total fault coverage[24]. APFD
metric is used to evaluate the performance of the algorithm.
The algorithm was implemented only for integer input and
the future work is to implement it for string input variable.
S. Raju and G. V. Uma implemented Factors Oriented Test
Case Prioritization Technique in Regression Testing using
Genetic Algorithm [25]. In the proposed technique,
Prioritization Factors (PF) were used. These factors may be
concrete, such as test case length, code coverage, data flow,
and fault proneness, or abstract, such as perceived code
complexity and severity of faults, which prioritizes the
system test cases based on the six factors: customer priority,
changes in requirement, implementation complexity,
completeness, traceability and fault impact. APFD and PTR
metric were used to evaluate the fitness. Based on the
performance measure obtained, the proposed method is
effectively prioritizing the test cases.

Abraham Kiran Joseph et al. presented a hybrid
approach, a combination of PSO and ABC for test case
optimization [15]. The objectives considered in this
research work were statement coverage and fault coverage
within a minimum execution time. Based on the proposed
hybrid approach, an optimal result for test case execution is
obtained. The performance of the proposed method was
evaluated and was compared with other optimization
techniques such as PSO and Ant Colony Optimization
(ACO). It was observed from the experimental results that
the proposed PSABC based test case prioritization based
approach provides better results as compared to ACO, PSO
and ABC.

 Researches for the purpose of regression testing
using fuzzy logic are very rare. Harsh Bhasin et al.
proposed a new approach to prioritization of test cases
using fuzzy logic[23]. It was found that fuzzy expert system
provides better results than the other decision making
systems. Aftab Ali et al. used fuzzy logic for test suite
optimization to optimize test cases based on fault detection,
execution time and coverage [21]. The proposed expert
system finds a trade off among the quality aspects,
technique used and level of testing. The implementation of
algorithm and its comparison with other CI techniques is
left for the future work. Deepak Rai et al. used Honey Bee
Mating Optimization Algorithm with Fuzzy Rule Base for
regression test suite optimization. Reduction in the test suite

using the proposed algorithm is approximately 50%, but it
is little bit low than ACO and BCO[20]. Deepak Rai et al.
further estimated the regression test case selection
probability using Fuzzy Rules[22]. In the paper , three
inputs were considered i.e. fault coverage, execution time
and code coverage and the output taken was selection
probability. The author had used triangular membership
function for fuzzification and COG(Center of Gravity) for
defuzzification. The results obtained were very close to the
optimal results.

 The Artificial Bee Colony optimization problem
was introduced by Dervis Karaboga in 2005 for solving
numerical optimization problem [5]. From the simulation
results it was concluded that the proposed algorithm has the
ability to get out of a local minimum and can be efficiently
used for multivariable, multimodal function optimization.
The results produced by ABC, Genetic Algorithm (GA),
Particle Swarm Algorithm (PSO) and Particle Swarm
Inspired Evolutionary Algorithm (PS-EA) were compared
and the results showed that ABC outperforms the other
algorithms. Dervis karaboga et al. compared the
performance of ABC algorithm with that of differential
evolution (DE), particle swarm optimization (PSO) and
evolutionary algorithm (EA) for multi-dimensional numeric
problems[9]. Results showed that ABC algorithm performs
better than the mentioned algorithms and can be efficiently
employed to solve the multimodal engineering problems
with high dimensionality.

 D. Jeya Mala presented ABC Tester for test suite

optimization and the superiority of the proposed approach
over the existing GA based approach was found [13].
Problems with GA include no memorization, non linear
optimization, risk of suboptimal solution and delayed
convergence. It can be concluded that the proposed
approach used fewer iterations to complete the task, more
scalable i.e. it requires less computation time to complete
the task and best in achieving near global optimal solution.
Bahriye Akay et al. introduced the modified ABC algorithm
for real parameter optimization[10]. A scaling factor that
tunes the step size adaptively was introduced. It can be
concluded that the standard ABC algorithm can efficiently
solve basic functions while the modified ABC algorithm
produces promising results on hybrid functions compared to
state-of-the-art algorithms.

 Mukesh Mann and Om Prakash Sangwan applied Cuscuta
Search Algorithm for prioritizing test cases in an order of
maximum fault coverage with minimum test suite execution
and compared its effectiveness with different prioritization
ordering [29]. Taking into account the experimental results,
it can be concluded that Cuscuta ordering gives same
results as given by the optimal and ACO ordering but better
than No order, Random order and Reverse order.

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2602

TABLE 2
COMPARATIVE STUDY OF METAHEURITIC TECHNIQUES

Sr.
No.

Author/Paper Technology used Data Set Results

1.
Arvinder Kaur, Shivangi
Goyal[11]

BCO for Test Suite
Prioritization

College Program ,Hotel
Reservation

Comparable to optimal
order

2. Arvinder Kaur,Divya Bhatt[12]
PSO+crossover for
prioiritization

Student, Hotel,Triangle,etc.
Comparable to optimal
order

3. D. Jeya Mala, V. Mohan [13]
ABC for test suite
optimization

Academic & Industrial Test
Path Coverage higher
than GA

4. Bharti Suri, Shweta Singal[14]
ACO for selection and
prioritization

C++ code
Not good in all cases, but
close to optimal

5. D. Karaboga, B. Basturk [9] ABC
Numerical Benchmark
function

ABC better than DE, EA
and PSO for multimodal
functions

6.
Arvinder Kaur, Shubhra
Goyal[24]

GA for prioritization
College Program, Hotel
reservation

Comparable to optimal
order

7.
Soma Sekhara Babu Lama et
al.[26]

ABC for optimization
Triangle Classification
problem

ABC Better than GA,
ACO and Tabu Search

8. Adi Srikant et al.[27] ABC for optimization Quadratic Equation
Better than GA, old
ABC, ACO

9.
Arvinder Kaur, Divya
Bhatt[17]

PSO+ GA mutation for
prioritization

Java code Good fault coverage

10.
Abraham Kiran Joseph et
al.[15]

ABC+ PSO for
optimization

Random Example
PSABC better than
ABC, ACO and GA

11.
Sunrender Singh Dahiya et
al.[16]

ABC for test suite
optimization

Triangle classifier, Binary
Search, etc.

Not suitable for large i/p
domains and for many
constraints

Metaheuristic techniques implemented by various
researchers for regression testing have been compared and
presented in the Table 2 on the basis of technology used,
data sets and the results obtained. From the table shown, it
can be concluded that ABC performs well in most of the
papers described above for test suite optimization. It can
also be verified that ABC provides better results than GA,
ACO and BCO. Although , the results of ACO, BCO and
GA were close to that of the optimal order.

It can be accomplished that BCO, PSO, ACO,
Additional Greedy, GA , Hill Climbing can be used for
regression test suite prioritization . For regression test suite
selection, ACO, Tabu Search and GA were used.

 With GA, we have the disadvantage of obtaining a

local optima or premature convergence etc.
 The drawbacks of Ant Colony Optimization

(ACO) include higher length test sequences and
repetition of nodes within the same sequence
without any advantage on test adequacy criteria.
Two ants started at an initial node, and during
random selection of next node, they will go to the
same next node. Since the process is random; one
cannot expect such behavior.

 The main drawback behind neural network based
approach is their black box structure i.e. it is
difficult to interpret and also they have a slow
convergence speed.

As ABC is non-pheronome based approach, there
is no need for updating the pheromone. Also, the parallel
behaviour of the employed, onlooker and scout bees make
the search process much faster, so it has a very high
processing speed. The global search method carried out by
the scout bee is combined with the local search carried out
by the onlooker and employed bee. So, there is a right
balance between exploration and exploitation.

IV. POTENTIAL BENEFITS OF METAHEURISTIC TECHNIQUES

TO REGRESSION TESTING

 In order to automate the testing process and to
provide a near optimal solution in a lesser time,
metaheuristic search techniques are used in the domain of
regression testing. Initial population of ants, bees or genes
etc. represents a test case (or test suite) and it evolves
towards the better solution until the stopping criteria is met.
The goal is to find an optimal solution to minimize the cost
of regression testing to obtain maximum path coverage,
branch coverage , statement coverage, fault coverage ,
minimum execution time or any combination of above.
With different objective functions, techniques will have
different complexity and search-space characteristics The
different metrics that can be used for evaluating the benefit
of various techniques are APFD (Average Percentage of
Fault Detected), APCD (Average Percentage of Code
Detected), APSD (Average Percentage of Statement
Detected), APBD (Average Percentage of Branch Detected)
etc.

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2603

V. CONCLUSION AND FUTURE WORK

Effective regression testing is a trade-off between
the number of regression tests needed nd the cost. The
greater the number of regression tests, the more complete is
the program revalidation. However, this also requires a
huge budget and greater resources which may not be
affordable in practice. In this paper, several techniques have
been described for minimizing the cost of regression
testing and their relative abilities are examined. Analysis
indicate that the Greedy Algorithm performs worse than
Additional Greedy, 2-Optimal, and Genetic Algorithms
overall. Also, the 2-Optimal Algorithm overcomes the
weakness of the Greedy Algorithm and Additional Greedy
Algorithm. It can also be accomplished that ABC
outperforms the other approaches i.e. GA, ACO, BCO and
PSO in test suite optimization process. As a future work,
different versions of ABC have to be applied for
minimizing the cost of regression testing and analytical
study can be conducted in finding the best ABC version to
achieve near global optimal solution. Also, the performance
of ABC can be compared with other metaheuristic
techniques for efficiency evaluation. Prioritization
technique based on Cuscuta search algorithm has been
proposed to find the near optimal solution which gives the
same results as given by the optimal and ACO ordering but
better than unorderd, random and reverse order. Cuscuta
search can be implemented for regression test case
prioritization and its comparison with existing metaheuristic
techniques can be done. Various tools that can be used for
implementation are MATLAB , Weka , Java IDE etc.

REFERENCES
[1] K.K.Aggarwal and Yogesh Singh, “Software Engineering Programs

Documentation, Operating Procedures”, New Age International
Publishers, Revised Second Edition – 2005.

[2] G. Rothermel, M.J. Harrold, J. Ostrin, and C. Hong, “An Empirical
Study of the Effects of Minimization on the Fault Detection
Capabilities of Test Suites”, Proc. International Conference on
Software Maintenance, pp. 34-43, Nov. 1998.

[3] D. Binkley,“Semantics Guided Regression Test Cost Reduction”, IEEE
Transactions on Software Engineering, Vol. 23, No. 8, pp. 498-516,
Aug. 1997.

[4] Gregg Rothermel, Roland H. Untch, Chengyun Chu andMary Jean
Harrold, “Prioritizing Test Cases For Regression Testing”, IEEE
Transactions on Software Engineering, Vol. 27, No. 10, October
2001.

[5] Dervis Karaboga and Bahriye Basturk, “A powerful and efficient
algorithm for numerical function optimization: artificial bee colony
(ABC)algorithm”, J Glob Optim 39:459–471DOI 10.1007/s10898-
007-9149-x, 2007.

[6] W. Eric Wong, J. R. Horgan, Saul London and Hira Agrawal, “A Study
of Effective Regression Testing in Practice”, 8th IEEE International
Symposium on Software Reliability Engineering (ISSRE’97), pp 264-
274, Albuquerque, NM , November 1997.

[7]P. McMinn, “Search-based Software Test Data Generation: A Survey”,
Software Testing, Verification and Reliability, Vol.14, No. 2, pp.
105- 156, 2004.

[8] J.H. Holland, “Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence”, Univ. of Michigan, 1975.

[9] D. Karaboga and B. Basturk , “On the performance of artificial bee
colony (ABC) algorithm”, Applied Soft Computing, Vol. 8, No. 1,
January 2008.

[10] Bahriye Akay and Dervis Karaboga, “A modified Artificial Bee
Colony algorithm for real-parameter optimization”, International
Journal on Information Sciences, Vol. 192, June 2012.

 [11] Arvinder Kaur and Shivangi Goyal, “A Bee Colony Optimization
Algorithm for Fault Coverage Based Regression Test Suite
Prioritization”, International Journal of Advanced Science and
Technology ,Vol. 29, April, 2011.

[12] Arvinder Kaur and Divya Bhatt, “Particle Swarm Optimization with
Cross-Over Operator for Prioritization in Regression Testing”,
International Journal of Computer Applications (0975 – 8887) Vol.
27, No.10, August 2011.

[13] D. Jeya Mala and V. Mohan, “ABC Tester - Artificial Bee Colony
Based Software Test Suite Optimization Approach”, International
Journal of Software Engineering,Vol.2 ,No.2 July 2009.

[14] Bharti Suri and Shweta Singhal, “Implementing Ant Colony
Optimization for Test Case Selection and Prioritization”,
International Journal on Computer Science and Engineering (IJCSE),
ISSN : 0975-3397 Vol. 3, No. 5 ,May 2011 .

[15] Abraham Kiran Joseph and G. Radhamani, “A Hybrid Model of
Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC)
Algorithm for Test Case Optimization”, International Journal on
Computer Science and Engineering (IJCSE), Vol. 3, No. 5 May 2011.

[16] Surender Singh Dahiya,Jitender Kumar Chhabra and Shakti Kumar,
“Application of Artificial Bee Colony Algorithm to Software
Testing”, 21st Australian Software Engineering Conference, IEEE
Computer Society, 2010.

[17] Arvinder Kaur and Divya Bhatt, “Hybrid Particle Swarm
Optimization for Regression Testing”, International Journal on
Computer Science and Engineering (IJCSE) ,Vol. 3, No. 5 May 2011.

[18] Zheng Li, Mark Harman, and Robert M. Hierons, “Search Algorithms
for Regression Test Case Prioritization”, IEEE Transactions on
Software Engineering, Vol. 33, No. 4, April 2007.

[19] Y. Singh, A. Kaur. and B. Suri, “A New Technique for Version –
Specific Test Case Selection and Prioritization for Regression
Testing”, Journal of Computer Society of India, 36(4), pp. 23-32,
2006.

[20] Deepak Rai and Kirti Tyagi, “Regression Test Case Optimization
Using Honey Bee Mating Optimization Algorithm with Fuzzy Rule
Base”, World Applied Sciences Journal, Vol. 31, No. 4, pp. 654-662,
2014.

[21] Aftab Ali Haider, Shahzad Rafiq and Aamer Nadeem, “Test Suite
Optimization using Fuzzy Logic”, International Conference on
Emerging Technologies, 2012.

[22] Deepak Rai and Kirti Tyagi, “Estimating the Regression Test Case
Selection Probability using Fuzzy Rules”, International Conference
on Recent Trends in Information Technology (ICRTIT) , 2013. [23]
Harsh Bhasin, Shailja Gupta and Mamta Kathuria, “Regression
Testing Using Fuzzy Logic”, (IJCSIT) International Journal of
Computer Science and Information Technologies, Vol. 4 , No. 2 ,pp.
378 – 380, 2013.

[24] Arvinder Kaur and Shubhra Goyal , “A Genetic Algorithm for Fault
based Regression Test Case Prioritization”, International Journal of
Computer Applications (0975 – 8887) Vol. 32, No.8, October 2011.

[25] S. Raju and G. V. Uma, “Factors Oriented Test Case Prioritization
Technique in Regression Testing using Genetic Algorithm”,
European Journal of Scientific Research ISSN 1450-216X Vol.74,
No.3 , pp. 389-402, 2012.

[26] Soma Sekhara Babu Lam, M.L. Hari Prasad Raju, Uday Kiran M,
Swaraj Ch. and Praveen Ranjan Srivastav, ”Automated Generation of
Independent Paths and Test Suite Optimization Using Artificial Bee
Colony”, International Conference on Communication Technology
and System Design, 2011.

[27] AdiSrikanth, Nandakishore J. Kulkarni, K. Venkat Naveen,
PuneetSingh, and Praveen Ranjan Srivastava, ”Test Case
Optimization Using Artificial Bee Colony Algorithm”, ACC 2011,
Part III, CCIS 192, pp. 570–579. Springer-Verlag Berlin Heidelberg ,
2011.

[28] Chartchai Doungsa-ard, Keshav Dahal , Alamgir Hossain and Taratip
Suwannasart, “An automatic test data generation from UML state
diagram using genetic algorithm ”, International Conference on
Software Engineering Advances, August 2007.

[29] Mukesh Mann and Om Prakash Sangwan, “Test case prioritization
using Cuscuta search”, International Academy of Ecology and
Environmental Sciences , Network Biology, 2014.

[30] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press, NY, 1999.

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2604

[31] R. Krishnamoorthi , S.A Sahaaya, A. Mary , “Regression Test Suite
Prioritization using Genetic Algorithms”, International Journal of
Hybrid Information Technology, Vol. 2, No. 3, pp. 35-52, 2009.

[32] Bianchi, Leonora; Marco Dorigo; Luca Maria Gambardella; Walter J.
Gutjahr . "A survey on metaheuristics for stochastic combinatorial
optimization". International Journal on Natural Computing , Vol. 8,
No. 2, pp. 239–287, 2009.

[33] C. Blum and A. Roli , "Metaheuristics in combinatorial optimization:
Overview and conceptual comparison", ACM Computing Surveys,
Vol. 35 , Issue 3, pp. 268–308, September 2003 .

[34] Mukesh Mann and Om Prakash Sangwan, “Generating and
prioritizing optimal paths using ant colony Optimization”,
Computational Ecology and Software, Vol. 5, No. 1,pp. 1-15,January
2015

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2605

