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Abstract— Regression testing is a very expensive and time
consuming process as there may be insufficient resources to 
re-execute all the test cases in resource and time constrained 
environment. It acquires a lot of human effort, if done 
manually. Lot of techniques have been reported on how to 
select regression tests so that the number of test cases do not 
boast up too high as the software evolves. The techniques 
include regression test selection, test minimization and test 
prioritization. In this paper, various metaheuristic approaches 
have been studied to examine their potential benefits to 
regression testing. The paper also addresses the problem of 
choice of fitness metric and determination of the most suitable 
search technique to apply. Genetic algorithm performs well, 
although Greedy approaches are surprisingly effective, given 
the multimodal nature of the landscape. It may be 
accomplished that Cuscuta ordering which is inspired by 
intelligent behaviour of plants gives same results as given by 
the optimal and ACO ordering but better than unordered, 
random and reverse order. The study also reveals that ABC 
outperforms the other approaches i.e. GA, ACO, BCO and 
PSO in test suite optimization process as parallel behaviour of 
the bees is used to reach the solution generation faster. 

Keywords— Metaheuristic, Regression Testing, Test Case 
prioritization. 

I. INTRODUCTION 

Software testing is one of the important process in 
Software Development Life Cycle. As specified by Glen 
Myers,” Testing is a process of executing a program with 
the intent of finding an error”. It typically consumes at least 
50% of the total cost involved in software development [28]. 
Test suite is a collection of test cases that is used to test a 
software program to show that it behaves as expected. Test 
suite optimization is a process of generating effective test 
cases in a test suite that can cover the given SUT (System 
Under Test) within less time. Regression testing is usually 
performed during the maintenance phase whenever any 
changes are made to the software in order to ensure that no 
new defects are introduced and also no old defects have 
regressed. Various techniques have been proposed by 
researchers on regression test case selection, test case 
minimization and test case prioritization using 
metaheuristic techniques. The emerging area in this field is 
swarm intelligence. Bonabeau has defined the swarm 
intelligence as ‘‘. . .any attempt to design algorithms or 
distributed problem-solving devices inspired by the 
collective behaviour of social insect colonies and other 

animal societies. . .” [30]. In this paper, we have explored 
the utilization of metaheuristic based approach to regression 
testing. 

A. Regression Testing 

Maintenance is required when some of the 
components of software need to be replaced, software is 
upgraded or enhanced to include additional features and to 
provide more services. Regression testing is defined as “the 
process of retesting the modified parts of the software and 
ensuring that no new errors have been introduced into 
previously tested code” [1]. Testers might re-run all test 
cases generated at earlier stages to ensure that the program 
behaves as expected. However, as the software evolves, test 
suite grows larger for which it is practically impossible to 
retest all the test cases. Effective regression testing is a 
trade off between number of regression test cases and the 
cost of regression testing.  

       There is a need of some approach for selecting the 
subset of test suite which can reveal the maximum faults 
within lesser time and the approach chosen  will depend on 
the problem in hand. If the code of software is available, 
then white box testing techniques i.e.  path coverage, code 
coverage, statement coverage , branch coverage etc. are 
used, while if only functionalities are available, then 
Boundary Value Analysis (BVA) , Equivalence 
Partitioning , all pair testing  etc. black box techniques are 
used.  Average Percentage of Fault Detected (APFD) is 
most frequently and widely used metric now-a-days which 
can be calculated as following [31]: 

APFD = 1  -  TF1+ TF2  +  + TFm    +      1 
n.m    2n 

where, T - The test suite under evaluation 
  m - The number of faults contained in the program      

  under test P 
     n - The total number of test cases in and 
    TFi - The position of the first test in T that exposes 

ith      fault. 

Exhaustive testing a program’s input is infeasible 
for any reasonably-sized program [7]. The number of 
possible tests for even simple software components is 
practically infinite and execution of all the test cases will 
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require a large amount of human effort and time. The 
various techniques which researchers have considered for 
minimizing the cost of regression testing includes 
regression test selection, regression test minimization and 
regression test prioritization. Therefore, the objective of our 
paper is to find the efficient test cases from the test suite 
which covers the maximum faults or functionalities, 
minimize redundancy and execution time etc. by means of 
the available techniques so that the cost can be minimized.  
                    Regression test selection techniques reduce the 
cost of regression testing by selecting an appropriate subset 
of test cases from the existing test suite based on 
information about the program, modified version and test 
suite [3]. We can further reduce the size and time required 
to execute a test suite by test suite minimization and test 
suite prioritization techniques. Test suite minimization 
techniques lower the cost by reducing a test suite to a 
minimal subset that maintains equivalent coverage of the 
original test suite with respect to a particular test adequacy 
criterion[2]. This can be achieved by removing the 
redundant test cases so that minimized test suite cover the 
same fault or functionalities but within the lesser time or 
resources or by removing the test cases for which the 
functionalities has been removed.  The main disadvantage 
behind test case selection and minimization is that it may 
discard the necessary test cases. 

       Test Suite Prioritization techniques order the 
test cases such that higher priority test cases according to 
some criteria are executed prior to the ones with the lower 
priority. For example, testers might wish to run test cases 
with the higher coverage prior to those having the lower 
coverage. So, none of the test case is discarded and the user 
can execute the test cases according to available time and 
resources.  Test case prioritization techniques have its very 
good application in time constrained environment. 
Researchers have formally defined the test case 
prioritization problem as follows:   
 
“Definition: The Test Case Prioritization Problem :  Given: 
T, a test suite, PT, the set of  permutations of T, and f, a 
function from PT to the real numbers. 
Problem: Find T′ € PT such that (¥ T′′) (T′′ €PT)(T′′≠ 
T′)[f(T′) ≥f(T′′)].   

 
In this definition, PT represents the set of all 

possible permutations of T and f is a function that applied 
to any such ordering yields an award value for that 
ordering.”[4] 

Test case prioritization is basically of two types: 
Version Specific and General test case prioritization. 
Version-specific test case prioritization, given a program P 
and test suite T, test suite will be prioritized only for use on 
a specific version of P whereas in general prioritization, it 
will be useful over the successive versions of P. Test case 
prioritization is very effective in time constrained 
environment in which we have limited time to re-execute 
all the test cases. Test suite prioritization in general is an 
NP complete problem and to reduce it into a polynomial 
time, authors have used time based constraint [19]. 

 

There can be many goals for prioritization: 
 To maximize the rate of fault detection. 
 Maximize the coverage 
 Increase the confidence in the reliability of the 

SUT in less time. 
 Increase the likelihood of revealing faults etc. 

 
The different techniques which are commonly used in test 
suite prioritization are as follows: 
 

 Random ordering: In this technique, test cases are 
randomly ordered in a test suite. 
 

 Statement coverage : Test cases are prioritized in 
terms of the total number of statements covered. 
This can be achieved by counting the amount of 
statements covered by each test case and sorting 
them in the descending order .When multiple test 
cases cover the same number of statements, an 
additional rule is necessary to order the test 
cases(they can be ordered randomly) .  

TABLE I 
TEST  SUITE STATEMENT COVERAGE  

Test Case Statements covered 

T1 S2,S3 

T2 S1,S4,S6,S7 

T3 S4,S5,S6 

 
Table 1 shows test suite statement coverage indicating the 
order of test cases as follows :  T2,T3,T1 
 

 Additional statement coverage: Highest priority is 
given to the test cases which cover the maximum 
number of statements, the next priority to the test 
cases with maximum statements not previously 
covered and so on. For test suite specified in Table 
1, ordering will be T2,T1,T3. 
 

 Branch Coverage: It is similar to the statement 
coverage with the difference that coverage is 
measured in terms of program branches, that is, 
test case which covers the maximum branches is 
given the higher priority and so on. 

 
 Additional branch coverage: Similar to additional 

statement coverage, except the coverage is 
measured in terms of number of branches rather 
than the number of statements. 
 

   Besides this, there are several other methods like 
Fault Exposing Potential (FEP), Additional FEP etc. which 
we have not included in our study .Test suite minimization 
and Test suite prioritization can also be used in combination 
i.e. first minimized test suite is obtained by removing the 

Shweta Mittal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2597-2605

www.ijcsit.com 2598



redundant test cases or those which are not needed and then 
assigning priority to test cases in minimized test suite.  

II. METAHEURISTIC TECHNIQUES 

 Metaheuristic is a higher-level procedure designed 
to generate a lower-level procedure or heuristic (partial 
search algorithm)[32] . These techniques provides us with 
the greater advantage of lesser execution time while making 
some negotiation on the solution obtained i.e. it provides 
the near optimal solution. They grant sufficiently good 
solution to an optimization problem especially with partial 
or inadequate information or limited computation capacity. 
Here, “heuristic” means search, that is, there is some 
learning component which is guiding the whole search 
process. Metaheuristic techniques are usually non-
deterministic i.e. given the same initial population, they will 
lead to different results, but the results are in close 
proximity to each other. Techniques which compose 
metaheuristics range from simple local search procedure to 
complex learning processes[33]. Based on our literature 
work in this section, we have done the classification of 
metaheuristic techniques as shown in Figure 1.  

. 

A. Classification of Metaheuristic Techniques 

The techniques can be classified into different 
groups depending on the criteria being considered, such as 
population based, iterative based, stochastic, deterministic, 
etc [5]. Population based approach maintain and improve 
multiple candidate solution, often using population 
characteristics to guide the search. Important groups of 
population based algorithms are Evolutionary Algorithms 
(EA) and Swarm Intelligence (SI) based algorithms. 

      

                               
 
 

Fig. 1  Classification of Metaheuristic Techniques 

 
where , GA: Genetic Algorithm , DE : Differential 
Evolution , ACO : Ant Colony Optimization, PSO: Particle 
Swarm Optimization, ABC: Artificial Bee Colony, BCO: 
Bee Colony Optimization .  
        

The most popular EA is Genetic Algorithm (GA). 
GA was invented by John Holland in 1960 which attempts 
to simulate the Darwinian theory of natural evolution[8]. As 
shown in Figure 2, an iterative process is executed, 
initialized by a randomly chosen population. The iterations 
are called generations and the members of the population 
are called chromosomes. The process terminates when a 
population satisfies some pre-determined condition (or a 
certain number of generations have been exceeded). On 
each generation, some members of the population are 
recombined, crossing over elements of their chromosomes. 
A fraction of the offspring of this union are mutated and, 
from the offspring and the original population a selection 
process is used to determine the new population. Crucially, 
recombination and selection are guided by the fitness 
function; fitter chromosomes having a greater chance to be 
selected and recombined. Lower probability for  mutation 
and higher for crossover helps to achieve  right balance 
between the exploration and exploitation. GA has been 
extensively used by researchers for regression test case 
prioritization [24,25].     
    
1.  Randomly initialize population(t) 
 2.  Determine fitness of population(t) 
 3.  Repeat 
 i.   Select parents from population(t) 
 ii.  Perform crossover on parents creating     
                     population(t+1) 
 iii. Perform mutation of population(t+1) 
               iv. Determine fitness of population(t+1) 
4.  Until best individual is good enough. 

Fig. 1  Pseudo code of GA 

 
Differential Evolution is the variant of GA. In DE 

algorithm, all solutions have an equal chance of being 
selected as parents independent of their fitness values. The 
use of a mutation operation, which has the self-adaptability 
feature, a crossover operation and a greedy process for the 
selection, makes DE a fast converging evolutionary 
algorithm. Moreover , DE does not face any Hamming Cliff 
Problem.  

 
The term swarm is used for the group of 

interactive agents (generally small in size) which possess 
some special behavior like bees swarming around their hive, 
ants following a trail,  flock of birds travelling together 
forming a particular shape etc in the search of food. 
Swarms locally interact with each other and with the 
environment following a decentralized approach.  Ant 
Colony Optimization (ACO), Bee Colony 
Optimization(BCO), Artificial Bee Colony Optimization 
(ABC), Particle Swarm Optimization(PSO) are examples of 
Swarm Intelligence. 

 
 ACO was initially proposed by Marco Dorigo in 

1992. It is based on the behaviour of ants in search of food 
sources. Artificial ants leave a virtual trail accumulated on 
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the path segment they follow. The path for each ant is 
selected on the basis of the amount of “pheromone trail” 
present on the possible paths starting from the current node 
of the ant. Over time, the pheromone trail starts to 
evaporate, thus reducing its attractive strength.  Pheromone 
evaporation has the advantage of avoiding the convergence 
to a locally optimal solution. Updating the trail is performed 
when ants either complete their search or get the shortest 
path to reach the food source. The pseudo code of ACO is 
presented in Figure 3. 
procedure ACO  
    while( termination condition is not satisfied) 
       generateSolutions() 
       daemonActions() 
       pheromoneUpdate() 
    end while 
  end procedure 

Fig. 3  Pseudo code of ACO 

 
Various authors implemented ACO for test case 

selection and prioritization [14,34]. 
 
BCO  is a population-based search 

algorithm  which was developed in 2005 and it has been 
used for regression test case prioritization ([11],[20]). It 
mimics the food foraging behaviour of honey bee colonies. 
In this algorithm, there are 2 types of bees i.e. scout bees 
and forager bees. The scout bees move randomly in an area 
surrounding the hive in search of available food sources. 
They continue with the exploration process and return back 
to the hive until they are exhausted (as shown in step 2 of 
Figure 4). After returning to hive, they deposit the food 
harvested and perform the waggle dance. By observing the 
dance, the forager bees learn the steps performed by scout 
bees and move to the food sources as guided by the scout 
bees. The forager bees continue then with the path 
exploitation.  

 
1. Initialize bee population. 
2. For each Scout Bee Si 
                     Perform exploration process (until some    
                     condition met) 
3. For each Forager Bee Fi 
                     Perform exploitation  process (until some  
                     condition met) 
4. Evaluate all solutions and find the best one. 

.   Fig. 4  Pseudo code of BCO 

 
The idea of PSO was given by John Kennedy and 

Eberhert in 1995. PSO is a population-based stochastic 
optimization technique. It consists of swarm of particles i.e. 
fishes, birds etc. moving in a search space of possible 
solutions for a problem. Every particle has a position vector 
representing a candidate solution to the problem and a 
velocity vector. Position here corresponds to rank of test 

case in a test suite and the velocity to execution time or 
coverage respectively. Moreover, each particle contains a 
small memory that stores its own best position seen so far 
and a global best position obtained through communication 
with its neighbour particles. The pseudo code of PSO is 
presented in Figure 5. 
 
 

1. Generate population of ‘n’  number of particles 
2. For each n particle 

i. Initialize position 
ii. Initialize velocity 

                   End for 
3. Identify best particle from the population. 
4. For each n particle 

i. Update position and velocity of particle 
w.r.t. best particle 

ii. If (updated position & velocity > old 
position and velocity) 

                                    Keep the new position and velocity   
                              Else 
                                        Revert to old position 
5. Check each particle 

               If (any particle fulfills stopping 
criteria) 

                                       STOP. 
                              Else 
                                        Go to Step 4. 

Fig. 5  Pseudo code of PSO 

 
ABC algorithm was proposed by Karaboga in 

2005 to solve numerical optimization problem. It is a non-
pheronome,  population based metaheuristic technique.  
Each employed bee is associated with a particular food 
source. Also, the number of employed and onlooker bees 
are equal. As explained in Figure 6, Bees randomly search 
for food positions with the higher amount of nectar. Once 
the bees find such position, they go back to the hive and 
communicate about the food source position. The most 
important part of the hive is dancing area where the bees 
exchange information. The related dance is called waggle 
dance. If food source position is close to the hive, the bees 
perform waggle dance else bees perform the round dance. 
Waggle dance is eight like figure. The bees have capability 
of memorizing the location of food sources with the higher 
nectar amount. Once such food source is discovered, the 
bees start exploiting it. Hence, they become the employed 
forager. ABC is based on the foraging behaviour of honey 
bees. There are three types of bees: 

 
 Employee bees: Each employee bee is associated 

with a particular food source. The bees go to their 
associated food source and determine its neighbor 
source, then evaluate its nectar amount and dances 
in the hive. 

 Onlooker bees: Each onlooker bee watches the 
dance of employed bees and chooses one of their 
sources depending on the dances, and then goes to 
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that source. After choosing a neighbor around that, 
she evaluates its nectar amount. 

 Scout bees: If the onlooker bee finds that the 
selected test cases are not efficient, then the scout 
bee generates a new population of test cases and 
replaces the test cases in the temporary-test case-
list with random new test cases. 

 
The whole process is repeated until termination 

condition is met, that is, maximum coverage criteria is 
obtained or maximum number of cycles is executed. ABC 
has been widely used for regression test case optimization 
([13],[16],[26],[27]) and for optimizing numerical 
benchmark functions ([5],[9],[10]).    
 

1. Initialize 
2. REPEAT 

i. Move the employed bees onto their food 
sources and determine their nectar 
amounts. 

ii. Move the onlookers onto the food sources 
and determine their nectar amounts. 

iii. Move the scouts for searching new food 
sources. 

iv. Memorize the best food source found so 
far. 

3. UNTIL (requirements are met). 

Fig. 6  Pseudo code of ABC 

 
Till now there are strong observations and 

formulation about the animal’s intelligent behaviour such as 
ant colony, bee colony. They involve foraging for food not 
by simple but by collective intelligence behaviour. Not only 
animals as described above forage for food intelligently but 
the same have been done by the plants too. A key point of 
observation is that Cuscuta somehow knows its starvation. 
If the host is found unsuitable, the Cuscuta species continue 
its search but once selection is made the Cuscuta species 
coil around its selected host in a specific manner 
(anticlockwise) to transfer resources from the host plant. 
Considering this dynamics, it  can be said that Cuscuta 
search for its food from its current need and will continue to 
attack till its starvation get complete. As soon as its 
starvation is completed a new branch will evolve. The 
evolution of new branch is considered as the completion of 
search i.e. no left starvation. The new branch will again 
repeat the same process until all plants nutrients are been 
taken by Cuscuta i.e. at short of dead host[29]. 
 

III. LITERATURE REVIEW 

Lot of techniques have been proposed by various 
researchers on how to apply metaheuristic techniques to 
regression testing. W. Eric Wong et al. proposed hybrid 
technique which combines modification, minimization and 
prioritization-based selection using a list of source code 
changes and the execution traces from test cases run on 
previous versions [6]. He reported his experience with a 
tool called ATAC which showed that both minimization 

and prioritization serve as good, cost-effective alternatives 
for testers who need to conduct quick regression testing 
under time pressure and budget constraints. Size reduction, 
precision and recall are the metrics used to examine the 
goodness of the proposed approach. 

 
G. Rothermal et al. described several techniques 

for using test execution information to prioritize test cases, 
including techniques that order test cases based on their 
total coverage of code components, coverage of code 
components not previously covered, and their estimated 
ability to reveal faults in the code components that they 
cover [4]. The performance of these techniques was 
compared with untreated, randomly and optimally ordered 
test suites. Analysis of the data showed that each of the 
prioritization techniques studied improve the rate of fault 
detection of test suites, and this improvement occurred even 
with the least expensive of those techniques. 

 
Some researchers applied greedy techniques for 

test case prioritization problem. Zheng Li et al. compared 
the greedy techniques i.e. Greedy, Additional Greedy and 
2-optimal with the two metaheuristic techniques i.e. Hill 
Climbing and Genetic Algorithm [18]. The results showed 
that Genetic Algorithms perform well, although Greedy 
approaches are surprisingly effective, given the multimodal 
nature of the landscape. 
     
     Arvinder Kaur et al. proposed the Bee Colony 
Optimization Algorithm for Fault Coverage Based 
Regression Test Suite Prioritization[11]. The BCO 
algorithm has been formulated for fault coverage to attain 
maximum fault coverage in minimal units of execution time 
of each test case, using two examples whose results are 
comparable to optimal solution. Average Percentage of 
Fault Detection (APFD) metrics and charts has been used to 
show the effectiveness of proposed algorithm and was 
implemented in CPP compiler. Arvinder Kaur et al. further 
used Particle Swarm Optimization with Cross-Over 
Operator for prioritization in regression testing which did 
prioritization of test cases on different selection criteria 
other than the fault coverage and code coverage, as the 
algorithm uses the phenomena of convergence (PSO) while 
diversifying search space (GA operator) for regression 
testing [12]. The APFD & APCC values were comparable 
w.r.t. optimal result, that proves algorithm prioritized 
efficiently.  Some researchers have also combined PSO 
with the mutation operator of GA [17]. The Genetic 
Algorithm (GA) operators provide optimized way to 
perform prioritization in regression testing and on blending 
it with Particle Swarm Optimization (PSO) technique 
makes it effective and provides fast solution. The Genetic 
Algorithm (GA) operator that has been used is mutation 
operator which allows the search engine to evaluate all 
aspects of the search space. For the problem taken, the 
algorithm provides 75.6% of fault coverage but sometimes, 
mutation can result in quite long execution time.  
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Bharti Suri et al. used another metaheuristic 
technique i.e. Ant Colony Optimization for test case 
selection and prioritization[14]. Random nature of ACO 
helps to explore the possible paths and choose the optimal 
from them. The results obtained were in close proximity to 
the optimal results. However, the best results are not found 
for all the cases. 

 
 Arvinder Kaur et al. implemented GA for 

regression test suite prioritization within time constrained 
environment on the basis of total fault coverage[24]. APFD 
metric is used to evaluate the performance of the algorithm. 
The algorithm was implemented only for integer input and 
the future work is to implement it for string input variable. 
S. Raju and G. V. Uma implemented Factors Oriented Test 
Case Prioritization Technique in Regression Testing using 
Genetic Algorithm [25]. In the proposed technique, 
Prioritization Factors (PF) were used. These factors may be 
concrete, such as test case length, code coverage, data flow, 
and fault proneness, or abstract, such as perceived code 
complexity and severity of faults, which prioritizes the 
system test cases based on the six factors: customer priority, 
changes in requirement, implementation complexity, 
completeness, traceability and fault impact. APFD and PTR 
metric were used to evaluate the fitness. Based on the 
performance measure obtained, the proposed method is 
effectively prioritizing the test cases. 
 

Abraham Kiran Joseph et al. presented a hybrid 
approach, a combination of PSO and ABC for test case 
optimization [15]. The objectives considered in this 
research work were statement coverage and fault coverage 
within a minimum execution time. Based on the proposed 
hybrid approach, an optimal result for test case execution is 
obtained. The performance of the proposed method was 
evaluated and was compared with other optimization 
techniques such as PSO and Ant Colony Optimization 
(ACO). It was observed from the experimental results that 
the proposed PSABC based test case prioritization based 
approach provides better results as compared to ACO, PSO 
and ABC.  
  
    Researches for the purpose of regression testing 
using fuzzy logic are very rare. Harsh Bhasin et al.  
proposed  a new approach to prioritization of test cases 
using fuzzy logic[23]. It was found that fuzzy expert system 
provides better results than the other decision making 
systems. Aftab Ali et al. used fuzzy logic for test suite 
optimization to optimize test cases based on fault detection, 
execution time and coverage [21]. The proposed expert 
system finds a trade off among the quality aspects, 
technique used and level of testing.  The implementation of 
algorithm and its comparison with other CI  techniques is 
left for the future work. Deepak Rai et al. used Honey Bee 
Mating Optimization Algorithm with Fuzzy Rule Base for 
regression test suite optimization. Reduction in the test suite 

using the proposed algorithm is approximately 50%,  but it 
is little bit low than ACO and BCO[20].  Deepak Rai et al. 
further estimated the regression test case selection 
probability using Fuzzy Rules[22]. In the paper , three 
inputs were considered i.e. fault coverage, execution time 
and code coverage and the output taken was selection 
probability. The author had used triangular membership 
function for fuzzification and COG( Center of Gravity) for 
defuzzification. The results obtained were very close to the 
optimal results. 
 
 The Artificial Bee Colony optimization problem 
was introduced by Dervis Karaboga in 2005 for solving 
numerical optimization problem [5]. From the simulation 
results it was concluded that the proposed algorithm has the 
ability to get out of a local minimum and can be efficiently 
used for multivariable, multimodal function optimization. 
The results produced by ABC, Genetic Algorithm (GA), 
Particle Swarm Algorithm (PSO) and Particle Swarm 
Inspired Evolutionary Algorithm (PS-EA) were compared 
and the results showed that ABC outperforms the other 
algorithms. Dervis karaboga et al. compared the 
performance of ABC algorithm with that of differential 
evolution (DE), particle swarm optimization (PSO) and 
evolutionary algorithm (EA) for multi-dimensional numeric 
problems[9]. Results showed that ABC algorithm performs 
better than the mentioned algorithms and can be efficiently 
employed to solve the multimodal engineering problems 
with high dimensionality. 

 
 D. Jeya Mala  presented ABC Tester for test suite 

optimization and  the superiority of the proposed approach 
over the existing GA based approach was found [13].  
Problems with GA include no memorization, non linear 
optimization, risk of suboptimal solution and delayed 
convergence. It can be concluded that the proposed 
approach used fewer iterations to complete the task, more 
scalable i.e. it requires less computation time to complete 
the task and best in achieving near global optimal solution. 
Bahriye Akay et al. introduced the modified ABC algorithm 
for real parameter optimization[10]. A scaling factor that 
tunes the step size adaptively was introduced. It can be 
concluded that the standard ABC algorithm can efficiently 
solve basic functions while the modified ABC algorithm 
produces promising results on hybrid functions compared to 
state-of-the-art algorithms. 

 
 Mukesh Mann and Om Prakash Sangwan applied Cuscuta 
Search Algorithm for prioritizing test cases in an order of 
maximum fault coverage with minimum test suite execution 
and compared its effectiveness with different prioritization 
ordering [29]. Taking into account the experimental results, 
it can be concluded  that Cuscuta ordering gives same 
results as given by the optimal and ACO ordering but better 
than No order, Random order and Reverse order. 
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TABLE 2 
COMPARATIVE STUDY OF METAHEURITIC TECHNIQUES 

Sr. 
No. 

Author/Paper Technology used Data Set Results 

1. 
Arvinder Kaur, Shivangi 
Goyal[11] 

BCO for Test Suite 
Prioritization 

College Program ,Hotel 
Reservation 

Comparable to optimal 
order 

2. Arvinder Kaur,Divya Bhatt[12] 
PSO+crossover for 
prioiritization 

Student, Hotel,Triangle,etc. 
Comparable to optimal 
order 

3. D. Jeya Mala, V. Mohan [13] 
ABC for test suite 
optimization 

Academic & Industrial Test 
Path Coverage higher 
than GA 

4. Bharti Suri, Shweta Singal[14] 
ACO for selection and 
prioritization 

C++ code 
Not good in all cases, but 
close to optimal 

5. D. Karaboga, B. Basturk [9] ABC 
Numerical Benchmark 
function 

ABC better than DE, EA 
and PSO for multimodal 
functions 

6. 
Arvinder Kaur, Shubhra 
Goyal[24] 

GA for prioritization 
College Program, Hotel 
reservation 

Comparable to optimal 
order 

7. 
Soma Sekhara Babu Lama et 
al.[ 26] 

ABC for optimization 
Triangle Classification 
problem 

ABC Better than GA, 
ACO and Tabu Search 

8. Adi Srikant et al.[ 27] ABC for optimization Quadratic Equation 
Better than GA, old 
ABC, ACO 

9. 
Arvinder Kaur, Divya 
Bhatt[17] 

PSO+ GA mutation for 
prioritization 

Java code Good fault coverage 

10. 
Abraham Kiran Joseph et 
al.[15] 

ABC+ PSO for 
optimization 

Random Example 
PSABC better than 
ABC, ACO and GA 

11. 
Sunrender Singh Dahiya et 
al.[16] 

ABC for test suite 
optimization 

Triangle classifier, Binary 
Search, etc. 

Not suitable for large i/p 
domains and for many 
constraints 

 
 

Metaheuristic techniques implemented by various 
researchers for regression testing have been compared and 
presented in the Table 2 on the basis of technology used, 
data sets and the results obtained. From the table shown, it 
can be concluded that ABC performs well in  most of the 
papers described above for test suite optimization. It can 
also be verified that ABC provides better results than GA, 
ACO and BCO. Although , the results of ACO, BCO and 
GA were close to that of the optimal order.   

It can be accomplished that BCO, PSO, ACO, 
Additional Greedy, GA , Hill Climbing can be used for 
regression test suite prioritization . For regression test suite 
selection, ACO, Tabu Search and GA were used.  

 
 With GA, we have the disadvantage of obtaining a 

local optima or premature convergence etc.  
 The drawbacks of Ant Colony Optimization 

(ACO) include higher length test sequences and 
repetition of nodes within the same sequence 
without any advantage on test adequacy criteria. 
Two ants started at an initial node, and during 
random selection of next node, they will go to the 
same next node. Since the process is random; one 
cannot expect such behavior.  

 The main drawback behind neural network based 
approach is their black box structure i.e. it is 
difficult to interpret and also they have a slow 
convergence speed.  
 

As ABC is non-pheronome based approach, there 
is no need for updating the pheromone.  Also, the parallel 
behaviour of the employed, onlooker and scout bees make 
the search process much faster, so it has a very high 
processing speed. The global search method carried out by 
the scout bee is combined with the local search carried out 
by the onlooker and employed bee. So, there is a right 
balance between exploration and exploitation.  

IV. POTENTIAL BENEFITS OF METAHEURISTIC TECHNIQUES 

TO REGRESSION TESTING   

  In order to automate the testing process and to 
provide a near optimal solution in a lesser time, 
metaheuristic search techniques are used in the domain of 
regression testing. Initial population of ants, bees or genes 
etc. represents a test case (or test suite)  and it evolves 
towards the better solution until the stopping criteria is met. 
The goal is to find an optimal solution to minimize the cost 
of  regression testing to obtain maximum path coverage, 
branch coverage , statement coverage, fault coverage , 
minimum execution time or any combination of above. 
With different objective functions, techniques will have 
different complexity and search-space characteristics The 
different metrics that can be used for evaluating the benefit 
of various techniques are APFD (Average Percentage of 
Fault Detected), APCD (Average Percentage of Code 
Detected), APSD (Average Percentage of Statement 
Detected), APBD (Average Percentage of Branch Detected) 
etc.  
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V. CONCLUSION AND FUTURE WORK 

Effective regression testing is a trade-off between 
the number of regression tests needed nd the cost. The 
greater the number of regression tests, the more complete is 
the program revalidation. However, this also requires a 
huge budget and greater resources which may not be 
affordable in practice. In this paper, several techniques have 
been described for minimizing the  cost of regression 
testing and their relative abilities are examined. Analysis 
indicate that the Greedy Algorithm performs worse than 
Additional Greedy, 2-Optimal, and Genetic Algorithms 
overall. Also, the 2-Optimal Algorithm overcomes the 
weakness of the Greedy Algorithm and Additional Greedy 
Algorithm. It can also be accomplished that ABC 
outperforms the other approaches i.e. GA, ACO, BCO and 
PSO in test suite optimization process. As a future work, 
different versions of ABC have to be applied for 
minimizing the cost of regression testing  and analytical 
study can be conducted in finding the best ABC version to 
achieve near global optimal solution. Also, the performance 
of ABC can be compared with other metaheuristic 
techniques for efficiency evaluation. Prioritization 
technique based on Cuscuta search algorithm has been 
proposed to find the near optimal solution which gives the 
same results as given by the optimal and ACO ordering but 
better than unorderd, random and reverse order. Cuscuta 
search can be implemented for regression test case 
prioritization and its comparison with existing metaheuristic 
techniques can be done. Various tools that can be used for 
implementation are MATLAB , Weka , Java IDE etc.    
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